Selenium Python Bindings
Release 2

Baiju Muthukadan

Nov 07, 2018






Contents

Installation 3
.1 Introduction . . . . . . . . . e e e e e 3
1.2 Downloading Python bindings for Selenium . . . . . . . ... ... .. ... ... oL 3
1.3 DIIVErS . . o o o o o e e e e e e e e e e e e e e e 3
1.4 Detailed instructions for Windows Uusers . . . . . . . . . . . ... oo 4
1.5 Downloading Selenium Server . . . . . . . . . . . e e e e e e e e e e e e 4
Getting Started 7
2.1 Simple Usage . . . . . o o e e e e e e 7
2.2 Example Explained . . . . . . . . . L e e e e e e 7
2.3 Using Selenium t0 WIIte teSIS . . . .« v v v v v v e e e e e e e e e e e e e e e e e e e e 8
24 Walk throughof theexample . . . . . . . . . . .. . ... e 9
2.5 Using Selenium with remote WebDriver . . . . . . . . . ... .. 0oL 10
Navigating 13
3.1 Interacting withthe page . . . . . . . . . . . o e e e e e 13
3.2 Fillinginforms . . . . . . . .. e e e e e 14
33 Dragand drop . . . . . .. e e 15
3.4 Moving between windows and frames . . . . . . .. ... oL oL 15
3.5 Popupdialogs . . . ... e e 16
3.6 Navigation: history and location . . . . . . . . . . .. . e e e 16
37 CoOKIES . . v v o i e e e e e e e e e 16
Locating Elements 17
4.1 Locatingby Id . . . . . . L L e e e e e 18
4.2 Locatingby Name . . . . . . .. .. . L 18
43 Locatingby XPath . . . . . . . . .. 19
4.4  Locating Hyperlinks by Link Text . . . . . . . . . . . 0 0 i e e e e e e e 20
4.5 Locating Elements by Tag Name . . . . . . . . . . . . 0 v i it e e e 21
4.6 Locating Elementsby Class Name . . . . . . . . .. . .. i 21
47 Locating Elements by CSS Selectors . . . . . . . . . . . e 21
Waits 23
5.1 Explicit Waits . . . . L . o e e e e 23
52 Implicit Waits . . . . L L e 25
Page Objects 27




6.1  TestCase . . . . . . i e e e e e e e e e e e 27
6.2  Pageobject Classes . . . . . . . L e e e e e e e e e 28
6.3  Pageelements . . . . . . . . . e e e e e e 29
6.4 LOcators . . . . .. e e e e e e e e e e e e 29
WebDriver API 31
7.1 EXCEPLONS . . . o o vt e e e e e e e e e e e e e e e e 32
72 ActionChains . . . . . . . . . e e e e e 37
T3 Alerts . . .. e 40
7.4  Special Keys . . . . . . e e 41
7.5 Locateelements By . . . . . . . . e e e e e e e e 43
7.6 Desired Capabilities . . . . . . . . . o . e e e e e e e e e e e e 43
7.7  Touch ACLIONS . . . . . . . o e e e e e e e e e 44
T.8  ProxXy . . . . o o e e 46
7.9  ULHLEES . . . . . o e e e e e e 47
T SEIVICE . . v v v v i e e e e e e e e e e e e e e e e e e e e 48
7.11 Application Cache . . . . . . . . . e e e e e e e e 48
7.12 Firefox WebDriver . . . . . . . . . e e e e e e e e e e e 49
7.13 Firefox WebDriver Options . . . . . . . . . . . .. e 51
7.14 Firefox WebDriver Profile . . . . . . . . . . . . . e e e e 52
7.15 Firefox WebDriver Binary . . . . . . . . . . . . e e e e e e e 52
7.16 Firefox WebDriver Extension Connection . . . . . . . . . . . . . v ittt e e e e 53
7.17 Chrome WebDriver . . . . . . . . . . e e e e e e e e e e e e e 54
7.18 Chrome WebDriver Options . . . . . . . . . . . .. it 55
7.19 Chrome WebDriver Service . . . . . . . . . . . e e e e e e e e e 56
7.20 Remote WebDriver . . . . . . . . . . e e e e e e e 56
7.21 Remote WebDriver WebElement . . . . . . . . . . . . . . e e e e e e 66
7.22 Remote WebDriver Command . . . . . . . . . . ... e e e e e e e e 73
7.23 Remote WebDriver Error Handler . . . . . . . . . . . . .. .. ... .. ... 76
7.24 Remote WebDriver Mobile . . . . . . . . . . . . . e e e 78
7.25 Remote WebDriver Remote Connection . . . . . . . . . . . . . . . 0 e e e 78
7.26 Remote WebDriver Utils . . . . . . . . . . e e e e e e e e e e 79
7.27 Internet Explorer WebDriver . . . . . . . . . . . e e e e e e e e e 80
7.28 Android WebDriver . . . . . . .. e e e e e e e e e e e e 81
7.29 Opera WebDriver . . . . . . . . . L 81
7.30 Phantom]JS WebDriver . . . . . . . . . e e e e e e e 82
7.31 PhantomJS WebDriver Service . . . . . . . . . . e e e e e e e e e 83
7.32 Safari WebDriver . . . . . . . e e e e e e e e e e 83
7.33 Safari WebDriver Service . . . . . . ... e e e e e e e e e e 84
7.34 Select SUppOrt . . . . .. e e e 85
7.35 Wait SUPPOIt . . . . o ot e e e e 86
7.36 Color SUPPOIt . . . v v e e e e e e e e e e e e e e e e e e e e 87
7.37 Event Firing WebDriver Support . . . . . . . . . o e e e e e e 87
7.38 Abstract Event Listener SUPPOTt . . . . . . . . . L e e e e e e e e e 89
7.39 Expected conditions SUpport . . . . . ...l e e e e 90
Appendix: Frequently Asked Questions 95
8.1 How touse ChromeDriver 7 . . . . . . . . . . . e e e e e e e e e e e e 95
8.2 Does Selenium 2 support XPath2.0? . . . . . . .. ... 95
8.3 How toscroll down to the bottomofapage ? . . . . . . . .. . . ... 95
8.4  How to auto save files using custom Firefox profile ? . . . . . ... ... ... ... . ... ... 96
8.5 Howtouploadfilesinto fileinputs 7. . . . . . . . . . .. e e e e e 96
8.6 How touse firebug with Firefox ? . . . . . . . . . . . . e 97
8.7 How to take screenshot of the current window ? . . . . . . . . . . . . . .. .. .. ... o 97




9 Indices and tables 99

Python Module Index 101







Selenium Python Bindings, Release 2

Author Baiju Muthukadan

License This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

Note: This is not an official documentation. If you would like to contribute to this documentation, you can fork this
project in Github and send pull requests. You can also send your feedback to my email: baiju.m.mail AT gmail DOT
com. So far 40+ community members have contributed to this project (See the closed pull requests). I encourage
contributors to add more sections and make it a good documentation!

Contents 1


https://muthukadan.net
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/baijum/selenium-python
https://github.com/baijum/selenium-python

Selenium Python Bindings, Release 2

2 Contents



CHAPTER 1

Installation

1.1 Introduction

Selenium Python bindings provides a simple API to write functional/acceptance tests using Selenium WebDriver.
Through Selenium Python API you can access all functionalities of Selenium WebDriver in an intuitive way.

Selenium Python bindings provide a convenient API to access Selenium WebDrivers like Firefox, Ie, Chrome, Remote
etc. The current supported Python versions are 2.7, 3.5 and above.

This documentation explains Selenium 2 WebDriver API. Selenium 1 / Selenium RC API is not covered here.

1.2 Downloading Python bindings for Selenium

You can download Python bindings for Selenium from the PyPI page for selenium package. However, a better ap-
proach would be to use pip to install the selenium package. Python 3.6 has pip available in the standard library. Using
pip, you can install selenium like this:

pip install selenium

You may consider using virtualenv to create isolated Python environments. Python 3.6 has pyvenv which is almost the
same as virtualenv.

1.3 Drivers

Selenium requires a driver to interface with the chosen browser. Firefox, for example, requires geckodriver, which
needs to be installed before the below examples can be run. Make sure it’s in your PATH, e. g., place it in /usr/bin or
Jusr/local/bin.

Failure to observe this step will give you an error selenium.common.exceptions.WebDriverException: Message: ‘geck-
odriver’ executable needs to be in PATH.



https://pypi.python.org/pypi/selenium
https://pip.pypa.io/en/latest/installing/
https://docs.python.org/3.6/installing/index.html
http://www.virtualenv.org
https://docs.python.org/3.6/using/scripts.html#scripts-pyvenv
https://github.com/mozilla/geckodriver/releases

Selenium Python Bindings, Release 2

Other supported browsers will have their own drivers available. Links to some of the more popular browser drivers
follow.

Chrome: | https://sites.google.com/a/chromium.org/chromedriver/downloads
Edge: https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
Firefox: https://github.com/mozilla/geckodriver/releases

Safari: https://webkit.org/blog/6900/webdriver-support-in-safari- 10/

1.4 Detailed instructions for Windows users

Note: You should have an internet connection to perform this installation.

1. Install Python 3.6 using the MSI available in python.org download page.

2. Start a command prompt using the cmd.exe program and run the pip command as given below to install
selenium.

’C:\Python35\Scripts\pip.exe install selenium

Now you can run your test scripts using Python. For example, if you have created a Selenium based script and saved
itinside C: \my_selenium_script.py, you can run it like this:

’C:\Python35\python.exe C:\my_selenium_script.py

1.5 Downloading Selenium server

Note: The Selenium server is only required if you want to use the remote WebDriver. See the Using Selenium
with remote WebDriver section for more details. If you are a beginner learning Selenium, you can skip this section
and proceed with next chapter.

Selenium server is a Java program. Java Runtime Environment (JRE) 1.6 or newer version is recommended to run
Selenium server.

You can download Selenium server 2.x from the download page of selenium website. The file name should be some-
thing like this: selenium-server-standalone-2.x.x.jar. You can always download the latest 2.x version
of Selenium server.

If Java Runtime Environment (JRE) is not installed in your system, you can download the JRE from the Oracle website.
If you are using a GNU/Linux system and have root access in your system, you can also use your operating system
instructions to install JRE.

If java command is available in the PATH (environment variable), you can start the Selenium server using this com-
mand:

java —jar selenium-server-standalone-2.x.x.jar

Replace 2.x.x with the actual version of Selenium server you downloaded from the site.

4 Chapter 1. Installation


https://sites.google.com/a/chromium.org/chromedriver/downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://github.com/mozilla/geckodriver/releases
https://webkit.org/blog/6900/webdriver-support-in-safari-10/
http://www.python.org/download
http://seleniumhq.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Selenium Python Bindings, Release 2

If JRE is installed as a non-root user and/or if it is not available in the PATH (environment variable), you can type
the relative or absolute path to the java command. Similarly, you can provide a relative or absolute path to Selenium
server jar file. Then, the command will look something like this:

/path/to/java —jar /path/to/selenium-server-standalone-2.x.x.Jjar

1.5. Downloading Selenium server 5



Selenium Python Bindings, Release 2

6 Chapter 1. Installation



CHAPTER 2

Getting Started

2.1 Simple Usage

If you have installed Selenium Python bindings, you can start using it from Python like this.

from selenium import webdriver
from selenium.webdriver.common.keys import Keys

driver = webdriver.Firefox ()

driver.get ("http://www.python.org")

assert "Python" in driver.title

elem = driver.find_element_by_name ("g")

elem.clear ()

elem.send_keys ("pycon")

elem.send_keys (Keys.RETURN)

assert "No results found." not in driver.page_source
driver.close ()

The above script can be saved into a file (eg:- python_org_search.py), then it can be run like this:

’python python_org_search.py

The python which you are running should have the selenium module installed.

2.2 Example Explained

The selenium.webdriver module provides all the WebDriver implementations. Currently supported WebDriver imple-
mentations are Firefox, Chrome, IE and Remote. The Keys class provide keys in the keyboard like RETURN, F1, ALT
etc.

from selenium import webdriver
from selenium.webdriver.common.keys import Keys




Selenium Python Bindings, Release 2

Next, the instance of Firefox WebDriver is created.

’driver = webdriver.Firefox ()

The driver.get method will navigate to a page given by the URL. WebDriver will wait until the page has fully loaded
(that is, the “onload” event has fired) before returning control to your test or script. It’s worth noting that if your page
uses a lot of AJAX on load then WebDriver may not know when it has completely loaded.:

’driver.get("http://www.python.org")

The next line is an assertion to confirm that title has “Python” word in it:

’assert "Python" in driver.title

WebDriver offers a number of ways to find elements using one of the find_element_by_* methods. For example, the
input text element can be located by its name attribute using find_element_by_name method. A detailed explanation
of finding elements is available in the Locating Elements chapter:

elem = driver.find_element_by_name ("g")

Next, we are sending keys, this is similar to entering keys using your keyboard. Special keys can be sent using Keys
class imported from selenium.webdriver.common.keys. To be safe, we’ll first clear any pre-populated text in the input
field (e.g. “Search”) so it doesn’t affect our search results:

elem.clear ()
elem.send_keys ("pycon")
elem.send_keys (Keys.RETURN)

After submission of the page, you should get the result if there is any. To ensure that some results are found, make an
assertion:

’assert "No results found." not in driver.page_source

Finally, the browser window is closed. You can also call guit method instead of close. The quit will exit entire browser
whereas close* will close one tab, but if just one tab was open, by default most browser will exit entirely.:

’driver.close()

2.3 Using Selenium to write tests

Selenium is mostly used for writing test cases. The selenium package itself doesn’t provide a testing tool/framework.
You can write test cases using Python’s unittest module. The other options for a tool/framework are py.test and nose.

In this chapter, we use unittest as the framework of choice. Here is the modified example which uses unittest module.
This is a test for python.org search functionality:

import unittest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class PythonOrgSearch (unittest.TestCase) :

def setUp(self):
self.driver = webdriver.Firefox ()

(continues on next page)

8 Chapter 2. Getting Started



Selenium Python Bindings, Release 2

(continued from previous page)

def test_search_in_python_org(self) :
driver = self.driver
driver.get ("http://www.python.org")
self.assertIn("Python", driver.title)
elem = driver.find_element_by_name ("g")
elem.send_keys ("pycon")
elem.send_keys (Keys.RETURN)
assert "No results found." not in driver.page_source

def tearDown (self):
self.driver.close ()
if name_ == "_ main_ ":
unittest.main ()

You can run the above test case from a shell like this:

python test_python_org_search.py

Ran 1 test in 15.566s

OK

The above result shows that the test has been successfully completed.

2.4 Walk through of the example

Initially, all the basic modules required are imported. The unittest module is a built-in Python based on Java’s JUnit.
This module provides the framework for organizing the test cases. The selenium.webdriver module provides all the
WebDriver implementations. Currently supported WebDriver implementations are Firefox, Chrome, Ie and Remote.
The Keys class provide keys in the keyboard like RETURN, F1, ALT etc.

import unittest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

The test case class is inherited from unittest. TestCase. Inheriting from TestCase class is the way to tell unittest module
that this is a test case:

class PythonOrgSearch (unittest.TestCase):

The setUp is part of initialization, this method will get called before every test function which you are going to write
in this test case class. Here you are creating the instance of Firefox WebDriver.

def setUp(self):
self.driver = webdriver.Firefox ()

This is the test case method. The test case method should always start with characters fest. The first line inside this
method create a local reference to the driver object created in setUp method.

def test_search_in_python_org(self):
driver = self.driver

2.4. Walk through of the example 9



http://docs.python.org/library/unittest.html

Selenium Python Bindings, Release 2

The driver.get method will navigate to a page given by the URL. WebDriver will wait until the page has fully loaded
(that is, the “onload” event has fired) before returning control to your test or script. It’s worth noting that if your page
uses a lot of AJAX on load then WebDriver may not know when it has completely loaded.:

’driver.get("http://www.python.org")

The next line is an assertion to confirm that title has “Python” word in it:

self.assertIn("Python", driver.title)

WebDriver offers a number of ways to find elements using one of the find_element_by_* methods. For example, the
input text element can be located by its name attribute using find_element_by_name method. Detailed explanation of
finding elements is available in the Locating Elements chapter:

elem = driver.find_element_by_name ("g")

Next, we are sending keys, this is similar to entering keys using your keyboard. Special keys can be send using Keys
class imported from selenium.webdriver.common.keys:

elem.send_keys ("pycon")
elem.send_keys (Keys.RETURN)

After submission of the page, you should get the result as per search if there is any. To ensure that some results are
found, make an assertion:

assert "No results found." not in driver.page_source

The tearDown method will get called after every test method. This is a place to do all cleanup actions. In the current
method, the browser window is closed. You can also call guit method instead of close. The quit will exit the entire
browser, whereas close will close a tab, but if it is the only tab opened, by default most browser will exit entirely.:

def tearDown (self):
self.driver.close()

Final lines are some boiler plate code to run the test suite:

if name == main__ ":

unittest.main ()

2.5 Using Selenium with remote WebDriver

To use the remote WebDriver, you should have Selenium server running. To run the server, use this command:

java —jar selenium-server-standalone-2.x.x.7jar

While running the Selenium server, you could see a message looking like this:

15:43:07.541 INFO - RemoteWebDriver instances should connect to: http://127.0.0.
—1:4444/wd/hub

The above line says that you can use this URL for connecting to remote WebDriver. Here are some examples:

from selenium import webdriver
from selenium.webdriver.common.desired capabilities import DesiredCapabilities

(continues on next page)

10 Chapter 2. Getting Started



Selenium Python Bindings, Release 2

(continued from previous page)

driver = webdriver.Remote (
command_executor="http://127.0.0.1:4444/wd/hub",
desired_capabilities=DesiredCapabilities.CHROME)

driver = webdriver.Remote (
command_executor="http://127.0.0.1:4444/wd/hub",
desired_capabilities=DesiredCapabilities.OPERA)

driver = webdriver.Remote (
command_executor="http://127.0.0.1:4444/wd/hub"',
desired_capabilities=DesiredCapabilities.HTMLUNITWITHJS)

The desired capabilities is a dictionary, so instead of using the default dictionaries, you can specify the values explic-
itly:

driver = webdriver.Remote (
command_executor="http://127.0.0.1:4444/wd/hub"',
desired_capabilities={'browserName': 'htmlunit',
'version': '2',

'javascriptEnabled': True})

2.5. Using Selenium with remote WebDriver 11




Selenium Python Bindings, Release 2

12 Chapter 2. Getting Started



CHAPTER 3

Navigating

The first thing you’ll want to do with WebDriver is navigate to a link. The normal way to do this is by calling get
method:

driver.get ("http://www.google.com")

WebDriver will wait until the page has fully loaded (that is, the onload event has fired) before returning control to
your test or script. It’s worth noting that if your page uses a lot of AJAX on load then WebDriver may not know when
it has completely loaded. If you need to ensure such pages are fully loaded then you can use waits.

3.1 Interacting with the page

Just being able to go to places isn’t terribly useful. What we’d really like to do is to interact with the pages, or, more
specifically, the HTML elements within a page. First of all, we need to find one. WebDriver offers a number of ways
to find elements. For example, given an element defined as:

<input type="text" name="passwd" id="passwd-id" />

you could find it using any of:

element = driver.find_element_by_id("passwd-id")
element driver.find_element_by_name ("passwd")
element = driver.find_element_by_xpath("//input [@id="'passwd-1id']")

You can also look for a link by its text, but be careful! The text must be an exact match! You should also be careful
when using XPATH in WebDriver. If there’s more than one element that matches the query, then only the first will be
returned. If nothing can be found, a NoSuchElementException will be raised.

WebDriver has an “Object-based” API; we represent all types of elements using the same interface. This means
that although you may see a lot of possible methods you could invoke when you hit your IDE’s auto-complete key
combination, not all of them will make sense or be valid. Don’t worry! WebDriver will attempt to do the Right Thing,
and if you call a method that makes no sense (“setSelected()” on a “meta” tag, for example) an exception will be
raised.

13




Selenium Python Bindings, Release 2

So, you’ve got an element. What can you do with it? First of all, you may want to enter some text into a text field:

’element.send_keys("some text")

You can simulate pressing the arrow keys by using the “Keys” class:

’element.send_keys(" and some", Keys.ARROW_DOWN)

It is possible to call send_keys on any element, which makes it possible to test keyboard shortcuts such as those used
on GMail. A side-effect of this is that typing something into a text field won’t automatically clear it. Instead, what
you type will be appended to what’s already there. You can easily clear the contents of a text field or textarea with the
clear method:

’element.clear()

3.2 Filling in forms

We’ve already seen how to enter text into a textarea or text field, but what about the other elements? You can “toggle”
the state of the drop down, and you can use “setSelected” to set something like an OPTION tag selected. Dealing with
SELECT tags isn’t too bad:

element = driver.find_element_by_ xpath("//select [@name="name']")
all_options = element.find_elements_by_tag_name ("option")
for option in all_options:

print ("Value is: " % option.get_attribute("value"))
option.click ()

This will find the first “SELECT” element on the page, and cycle through each of its OPTIONs in turn, printing out
their values, and selecting each in turn.

As you can see, this isn’t the most efficient way of dealing with SELECT elements. WebDriver’s support classes
include one called a “Select”, which provides useful methods for interacting with these:

from selenium.webdriver.support.ui import Select
select = Select (driver.find_element_by_name ('name'))
select.select_by_index (index)
select.select_by_visible_text ("text™)
select.select_by_value (value)

WebDriver also provides features for deselecting all the selected options:

select = Select (driver.find_element_by_id('id'))
select.deselect_all ()

This will deselect all OPTIONs from that particular SELECT on the page.

Suppose in a test, we need the list of all default selected options, Select class provides a property method that returns
a list:

select = Select (driver.find_element_by_xpath("//select [E@name="name']"))
all_selected_options = select.all_selected_options

To get all available options:

options = select.options

14 Chapter 3. Navigating



Selenium Python Bindings, Release 2

Once you’ve finished filling out the form, you probably want to submit it. One way to do this would be to find the
“submit” button and click it:

# Assume the button has the ID "submit" :)
driver.find_element_lby_id("submit") .click ()

Alternatively, WebDriver has the convenience method “submit” on every element. If you call this on an element within
a form, WebDriver will walk up the DOM until it finds the enclosing form and then calls submit on that. If the element
isn’t in a form, then the NoSuchElementExcept ion will be raised:

’element.submit()

3.3 Drag and drop

You can use drag and drop, either moving an element by a certain amount, or on to another element:

element = driver.find_element_by_name ("source")
target = driver.find_element_by_name ("target")

from selenium.webdriver import ActionChains
action_chains = ActionChains (driver)
action_chains.drag_and_drop(element, target) .perform()

3.4 Moving between windows and frames

It’s rare for a modern web application not to have any frames or to be constrained to a single window. WebDriver
supports moving between named windows using the “switch_to_window” method:

’driver.switch_to_window("windowName")

All calls to driver will now be interpreted as being directed to the particular window. But how do you know the
window’s name? Take a look at the javascript or link that opened it:

<a href="somewhere.html" target="windowName">Click here to open a new window</a>

Alternatively, you can pass a “window handle” to the “switch_to_window()” method. Knowing this, it’s possible to
iterate over every open window like so:

for handle in driver.window_handles:
driver.switch_to_window (handle)

You can also swing from frame to frame (or into iframes):

’driver.switch_to_frame("frameName")

It’s possible to access subframes by separating the path with a dot, and you can specify the frame by its index too.
That is:

’driver.switch_to_frame("frameName.O.child")

would go to the frame named “child” of the first subframe of the frame called “frameName”. All frames are evaluated
as if from *top*.

3.3. Drag and drop 15



Selenium Python Bindings, Release 2

Once we are done with working on frames, we will have to come back to the parent frame which can be done using:

’driver.switch_to_default_content()

3.5 Popup dialogs

Selenium WebDriver has built-in support for handling popup dialog boxes. After you’ve triggered action that would
open a popup, you can access the alert with the following:

’alert = driver.switch_to_alert ()

This will return the currently open alert object. With this object, you can now accept, dismiss, read its contents or even
type into a prompt. This interface works equally well on alerts, confirms, prompts. Refer to the API documentation
for more information.

3.6 Navigation: history and location

Earlier, we covered navigating to a page using the “get” command ( driver.get ("http://www.example.
com") ) As you’ve seen, WebDriver has a number of smaller, task-focused interfaces, and navigation is a useful task.
To navigate to a page, you can use get method:

driver.get ("http://www.example.com")

To move backward and forward in your browser’s history:

driver.forward()
driver.back ()

Please be aware that this functionality depends entirely on the underlying driver. It’s just possible that something
unexpected may happen when you call these methods if you’re used to the behavior of one browser over another.

3.7 Cookies

Before we leave these next steps, you may be interested in understanding how to use cookies. First of all, you need to
be on the domain that the cookie will be valid for:

# Go to the correct domain
driver.get ("http://www.example.com")

# Now set the cookie. This one's valid for the entire domain
cookie = {‘name’ : ‘foo’, ‘value’ : ‘bar’}
driver.add_cookie (cookie)

# And now output all the available cookies for the current URL
driver.get_cookies ()

16 Chapter 3. Navigating



CHAPTER 4

Locating Elements

There are various strategies to locate elements in a page. You can use the most appropriate one for your case. Selenium
provides the following methods to locate elements in a page:

e find_element_by_id
e find_element_by_name
* find_element_by_xpath
e find_element_by_link_text
e find_element_by_partial_link_text
* find_element_by_tag_name
e find_element_by_class_name
* find_element_by_css_selector
To find multiple elements (these methods will return a list):
* find_elements_by_name
e find_elements_by_xpath
* find_elements_by_link_text
* find_elements_by_partial_link_text
* find_elements_by_tag_name
* find_elements_by_class_name
e find_elements_by_css_selector

Apart from the public methods given above, there are two private methods which might be useful with locators in page
objects. These are the two private methods: find_element and find_elements.

Example usage:

17



Selenium Python Bindings, Release 2

from selenium.webdriver.common.by import By

driver.find_element (By.XPATH, '//button[text ()="Some text"]"')
driver.find_elements (By.XPATH, '//button')

These are the attributes available for By class:

ID = "id"

XPATH = "xpath"

LINK_TEXT = "link text"
PARTIAL_LINK_TEXT = "partial link text"
NAME = "name"

TAG_NAME = "tag name"

CLASS_NAME = "class name"

CSS_SELECTOR = "css selector”

4.1 Locating by Id

Use this when you know id attribute of an element. With this strategy, the first element with the id attribute value
matching the location will be returned. If no element has a matching id attribute, a NoSuchElementException
will be raised.

For instance, consider this page source:

<html>
<body>
<form id="loginForm">
<input name="username" type="text" />
<input name="password" type="password" />
<input name="continue" type="submit" value="Login" />
</form>
</body>
<html>

The form element can be located like this:

’login_form = driver.find_element_by_id('loginForm')

4.2 Locating by Name

Use this when you know name attribute of an element. With this strategy, the first element with the name attribute value
matching the location will be returned. If no element has a matching name attribute, aNoSuchElementException
will be raised.

For instance, consider this page source:

<html>
<body>
<form id="loginForm">
<input name="username" type="text" />
<input name="password" type="password" />

<input name="continue" type="submit" value="Login" />

(continues on next page)

18 Chapter 4. Locating Elements



Selenium Python Bindings, Release 2

(continued from previous page)

<input name="continue" type="button" value="Clear" />
</form>

</body>

<html>

The username & password elements can be located like this:

username
password

driver.find_element_by_name ('username')
driver.find_element_by_name ('password')

This will give the “Login” button as it occurs before the “Clear” button:

’continue driver.find_element_by_name ('continue')

4.3 Locating by XPath

XPath is the language used for locating nodes in an XML document. As HTML can be an implementation of XML
(XHTML), Selenium users can leverage this powerful language to target elements in their web applications. XPath
extends beyond (as well as supporting) the simple methods of locating by id or name attributes, and opens up all sorts
of new possibilities such as locating the third checkbox on the page.

One of the main reasons for using XPath is when you don’t have a suitable id or name attribute for the element you
wish to locate. You can use XPath to either locate the element in absolute terms (not advised), or relative to an element
that does have an id or name attribute. XPath locators can also be used to specify elements via attributes other than id
and name.

Absolute XPaths contain the location of all elements from the root (html) and as a result are likely to fail with only
the slightest adjustment to the application. By finding a nearby element with an id or name attribute (ideally a parent
element) you can locate your target element based on the relationship. This is much less likely to change and can make
your tests more robust.

For instance, consider this page source:

<html>
<body>
<form id="loginForm">
<input name="username" type="text" />
<input name="password" type="password" />
<input name="continue" type="submit" value="Login" />
<input name="continue" type="button" value="Clear" />
</form>
</body>
<html>

The form elements can be located like this:

login_form = driver.find_element_by_xpath ("/html/body/form[1]")
login_form = driver.find_element_by_xpath ("//form[1]")
login_form = driver.find_element_by_xpath("//form[@id="loginForm']")

1. Absolute path (would break if the HTML was changed only slightly)
2. First form element in the HTML

3. The form element with attribute named id and the value loginForm

4.3. Locating by XPath 19



Selenium Python Bindings, Release 2

The username element can be located like this:

username = driver.find_element_by_xpath("//form[input/@name="username']")
username = driver.find_element_by_xpath("//form[@id="loginForm']/input[1]")
username = driver.find_element_by_xpath("//input [@name="username']")

1. First form element with an input child element with attribute named name and the value username
2. First input child element of the form element with attribute named id and the value loginForm
3. First input element with attribute named ‘name’ and the value username

The “Clear” button element can be located like this:

clear_button = driver.find_element_by_xpath ("//input [@name="continue'] [Etype="button']
N ")

clear_button = driver.find_element_by_xpath("//form[@id="loginForm']/input[4]")

1. Input with attribute named name and the value continue and attribute named fype and the value button
2. Fourth input child element of the form element with attribute named id and value loginForm
These examples cover some basics, but in order to learn more, the following references are recommended:
* W3Schools XPath Tutorial
e W3C XPath Recommendation
o XPath Tutorial - with interactive examples.
There are also a couple of very useful Add-ons that can assist in discovering the XPath of an element:
» XPath Checker - suggests XPath and can be used to test XPath results.
 Firebug - XPath suggestions are just one of the many powerful features of this very useful add-on.

e XPath Helper - for Google Chrome

4.4 Locating Hyperlinks by Link Text

Use this when you know link text used within an anchor tag. With this strategy, the first element with the
link text value matching the location will be returned. If no element has a matching link text attribute, a
NoSuchElementException will be raised.

For instance, consider this page source:

<html>
<body>
<p>Are you sure you want to do this?</p>
<a href="continue.html">Continue</a>
<a href="cancel.html">Cancel</a>
</body>
<html>

The continue.html link can be located like this:

continue_link = driver.find_element_by_link_text ('Continue’)
continue_link = driver.find_element_by_partial_link_text ('Conti')

20 Chapter 4. Locating Elements



https://www.w3schools.com/xml/xpath_intro.asp
http://www.w3.org/TR/xpath
http://www.zvon.org/comp/r/tut-XPath_1.html
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://chrome.google.com/webstore/detail/hgimnogjllphhhkhlmebbmlgjoejdpjl

Selenium Python Bindings, Release 2

4.5 Locating Elements by Tag Name

Use this when you want to locate an element by tag name. With this strategy, the first element with the given tag name
will be returned. If no element has a matching tag name, a NoSuchElementException will be raised.

For instance, consider this page source:

<html>
<body>
<hl>Welcome</hl>
<p>Site content goes here.</p>
</body>
<html>

The heading (h1) element can be located like this:

’headingl = driver.find_element_by_tag _name('hl"')

4.6 Locating Elements by Class Name

Use this when you want to locate an element by class attribute name. With this strategy, the first element
with the matching class attribute name will be returned. If no element has a matching class attribute name, a
NoSuchElementException will be raised.

For instance, consider this page source:

<html>
<body>
<p class="content">Site content goes here.</p>
</body>
<html>

The “p” element can be located like this:

’content = driver.find_element_py_class_name ('content")

4.7 Locating Elements by CSS Selectors

Use this when you want to locate an element by CSS selector syntax. With this strategy, the first element with the
matching CSS selector will be returned. If no element has a matching CSS selector, a NoSuchElementException
will be raised.

For instance, consider this page source:

<html>
<body>
<p class="content">Site content goes here.</p>
</body>
<html>

The “p” element can be located like this:

4.5. Locating Elements by Tag Name 21




Selenium Python Bindings, Release 2

content = driver.find_element_by_css_selector('p.content')

Sauce Labs has good documentation on CSS selectors.

22 Chapter 4. Locating Elements


https://saucelabs.com/resources/articles/selenium-tips-css-selectors

CHAPTER B

Waits

These days most of the web apps are using AJAX techniques. When a page is loaded by the browser, the elements
within that page may load at different time intervals. This makes locating elements difficult: if an element is not yet
present in the DOM, a locate function will raise an ElementNotVisibleException exception. Using waits, we can solve
this issue. Waiting provides some slack between actions performed - mostly locating an element or any other operation
with the element.

Selenium Webdriver provides two types of waits - implicit & explicit. An explicit wait makes WebDriver wait for a
certain condition to occur before proceeding further with execution. An implicit wait makes WebDriver poll the DOM
for a certain amount of time when trying to locate an element.

5.1 Explicit Waits

An explicit wait is a code you define to wait for a certain condition to occur before proceeding further in the code.
The extreme case of this is time.sleep(), which sets the condition to an exact time period to wait. There are some
convenience methods provided that help you write code that will wait only as long as required. WebDriverWait in
combination with ExpectedCondition is one way this can be accomplished.

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

driver = webdriver.Firefox ()
driver.get ("http://somedomain/url_that_delays_loading")
try:

element = WebDriverWait (driver, 10) .until(
EC.presence_of_element_located((By.ID, "myDynamicElement"))
)
finally:
driver.quit ()

23




Selenium Python Bindings, Release 2

This waits up to 10 seconds before throwing a TimeoutException unless it finds the element to return within 10 sec-
onds. WebDriverWait by default calls the ExpectedCondition every 500 milliseconds until it returns successfully. A
successful return is for ExpectedCondition type is Boolean return true or not null return value for all other Expected-
Condition types.

Expected Conditions

There are some common conditions that are frequently of use when automating web browsers. Listed below are
the names of each. Selenium Python binding provides some convenience methods so you don’t have to code an
expected_condition class yourself or create your own utility package for them.

o title_is

e title_contains

* presence_of_element_located

* visibility_of_element_located

* visibility_of
 presence_of_all_elements_located

* text_to_be_present_in_element

* text_to_be_present_in_element_value
e frame_to_be_available_and_switch_to_it
* invisibility_of_element_located

¢ element_to_be_clickable

¢ staleness_of

¢ element_to_be_selected

¢ element_located_to_be_selected

¢ element_selection_state_to_be

¢ element_located_selection_state_to_be

e alert_is_present

from selenium.webdriver.support import expected_conditions as EC

wait = WebDriverWait (driver, 10)
element = wait.until (EC.element_to_be_clickable ((By.ID, 'someid')))

The expected_conditions module contains a set of predefined conditions to use with WebDriverWait.
Custom Wait Conditions

You can also create custom wait conditions when none of the previous convenience methods fit your requirements.
A custom wait condition can be created using a class with __call__ method which returns False when the condition
doesn’t match.

class element_has_css_class (object) :
"""An expectation for checking that an element has a particular css class.

locator - used to find the element
returns the WebElement once it has the particular css class

mmn

def _ init_ (self, locator, css_class):

(continues on next page)

24 Chapter 5. Waits



http://selenium-python.readthedocs.io/api.html#module-selenium.webdriver.support.expected_conditions

Selenium Python Bindings, Release 2

(continued from previous page)

self.locator = locator
self.css_class = css_class

def _ call__ (self, driver):
element = driver.find_element (xself.locator) # Finding the referenced element
if self.css_class in element.get_attribute("class"):
return element
else:
return False

# Wait until an element with id='myNewInput' has class 'myCSSClass'
wait = WebDriverWait (driver, 10)
element wait.until (element_has_css_class ((By.ID, 'myNewlInput'), "myCSSClass"))

5.2 Implicit Waits

An implicit wait tells WebDriver to poll the DOM for a certain amount of time when trying to find any element (or
elements) not immediately available. The default setting is 0. Once set, the implicit wait is set for the life of the
WebDriver object.

from selenium import webdriver

driver = webdriver.Firefox ()

driver.implicitly_wait (10) # seconds

driver.get ("http://somedomain/url_that_delays_loading")
myDynamicElement = driver.find_element_by_id("myDynamicElement™)

5.2. Implicit Waits 25




Selenium Python Bindings, Release 2

26 Chapter 5. Waits



CHAPTER O

Page Objects

This chapter is a tutorial introduction to page objects design pattern. A page object represents an area in the web
application user interface that your test is interacting.

Benefits of using page object pattern:
* Creating reusable code that can be shared across multiple test cases
* Reducing the amount of duplicated code

« If the user interface changes, the fix needs changes in only one place

6.1 Test case

Here is a test case which searches for a word in python.org website and ensure some results are found.

import unittest
from selenium import webdriver
import page

class PythonOrgSearch (unittest.TestCase) :
"""A sample test class to show how page object works"""

def setUp(self):
self.driver = webdriver.Firefox()
self.driver.get ("http://www.python.org")

def test_search_in_python_org(self) :
Tests python.org search feature. Searches for the word "pycon" then verified
—~that some results show up.
Note that it does not look for any particular text in search results page._
—This test verifies that
the results were not empty.

(continues on next page)

27




Selenium Python Bindings, Release 2

(continued from previous page)

moon

#Load the main page. In this case the home page of Python.org.
main_page = page.MainPage (self.driver)

#Checks 1if the word "Python" is in title

assert main_page.is_title_matches (), "python.org title doesn't match."
#Sets the text of search textbox to "pycon"
main_page.search_text_element = "pycon"

main_page.click_go_button ()

search_results_page = page.SearchResultsPage (self.driver)

#Verifies that the results page 1is not empty

assert search_results_page.is_results_found(), "No results found."

def tearDown (self):
self.driver.close ()

if name == "_ _main_ ":

unittest.main ()

6.2 Page object classes

The page object pattern intends creating an object for each web page. By following this technique a layer of separation
between the test code and technical implementation is created.

The page . py will look like this:

from element import BasePageElement
from locators import MainPageLocators

class SearchTextElement (BasePageElement) :
"""This class gets the search text from the specified locator"""

#The locator for search box where search string is entered
locator = 'q'
class BasePage (object) :
"""Base class to initialize the base page that will be called from all pages"""
def _ init_ (self, driver):
self.driver = driver
class MainPage (BasePage) :

"""Home page action methods come here. I.e. Python.org"""

#Declares a variable that will contain the retrieved text
search_text_element = SearchTextElement ()

def is_title_matches(self):
"""Verifies that the hardcoded text "Python" appears in page title"""

return "Python" in self.driver.title

def click_go_button(self):

(continues on next page)

28 Chapter 6. Page Objects



Selenium Python Bindings, Release 2

(continued from previous page)

"""Triggers the search"""
element = self.driver.find_element (xMainPageLocators.GO_BUTTON)
element.click ()

class SearchResultsPage (BasePage) :
"""Search results page action methods come here"""

def is_results_found(self):
# Probably should search for this text in the specific page
# element, but as for now it works fine
return "No results found." not in self.driver.page_source

6.3 Page elements

The element . py will look like this:

from selenium.webdriver.support.ui import WebDriverWait

class BasePageElement (object) :
"""Base page class that is initialized on every page object class."""

def _ set_ (self, obj, value):
"""Sets the text to the value supplied"""
driver = obj.driver
WebDriverWait (driver, 100) .until(
lambda driver: driver.find_element_by_name (self.locator))
driver.find_element_by_name (self.locator) .clear ()
driver.find_element_by_name (self.locator) .send_keys (value)

def _ _get_ (self, obj, owner):
"""Gets the text of the specified object"""
driver = obj.driver
WebDriverWait (driver, 100) .until (
lambda driver: driver.find_element_by_name (self.locator))
element = driver.find_element_by_name (self.locator)
return element.get_attribute ("value")

6.4 Locators

One of the practices is to separate the locator strings from the place where they are being used. In this example,
locators of the same page belong to same class.

The locators.py will look like this:

from selenium.webdriver.common.by import By

class MainPageLocators (object) :
"""A class for main page locators. All main page locators should come here"""

GO_BUTTON = (By.ID, 'submit")

(continues on next page)

6.3. Page elements 29




Selenium Python Bindings, Release 2

(continued from previous page)

class SearchResultsPagelLocators (object) :
"""A class for search results locators.
—here"""

pass

All search results locators should come,

30

Chapter 6. Page Objects




CHAPTER /

WebDriver API

Note: This is not an official documentation. Official API documentation is available here.

This chapter covers all the interfaces of Selenium WebDriver.
Recommended Import Style

The API definitions in this chapter show the absolute location of classes. However, the recommended import style is
as given below:

from selenium import webdriver

Then, you can access the classes like this:

webdriver.Firefox
webdriver.FirefoxProfile
webdriver.Chrome
webdriver.ChromeOptions
webdriver.Ie
webdriver.Opera
webdriver.PhantomJds
webdriver.Remote
webdriver.DesiredCapabilities
webdriver.ActionChains
webdriver.TouchActions
webdriver.Proxy

The special keys class (Keys) can be imported like this:

from selenium.webdriver.common.keys import Keys

The exception classes can be imported like this (Replace the TheNameOfTheExceptionClass with the actual
class name given below):

31



https://seleniumhq.github.io/selenium/docs/api/py/api.html

Selenium Python Bindings, Release 2

from selenium.common.exceptions import [TheNameOfTheExceptionClass]

Conventions used in the API

Some attributes are callable (or methods) and others are non-callable (properties). All the callable attributes are ending
with round brackets.

Here is an example for property:
e current_url
URL of the currently loaded page.
Usage:

driver.current_url

Here is an example of a method:
e close()
Closes the current window.

Usage:

’ driver.close ()

7.1 Exceptions

Exceptions that may happen in all the webdriver code.

exception selenium.common.exceptions.ElementClickInterceptedException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

The Element Click command could not be completed because the element receiving the events is obscuring the
element that was requested clicked.

exception selenium.common.exceptions.ElementNotInteractableException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.InvalidElementStateException

Thrown when an element is present in the DOM but interactions with that element will hit another element do
to paint order

exception selenium.common.exceptions.ElementNotSelectableException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.InvalidElementStateException

Thrown when trying to select an unselectable element.

For example, selecting a ‘script’ element.

32 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

exception selenium.common.exceptions.ElementNotVisibleException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.InvalidElementStateException

Thrown when an element is present on the DOM, but it is not visible, and so is not able to be interacted with.
Most commonly encountered when trying to click or read text of an element that is hidden from view.

exception selenium.common.exceptions.ErrorInResponseException (response, msg)
Bases: selenium.common.exceptions.WebDriverException

Thrown when an error has occurred on the server side.
This may happen when communicating with the firefox extension or the remote driver server.

__init__ (response, msg)
X.__init__(...) initializes x; see help(type(x)) for signature

exception selenium.common.exceptions.ImeActivationFailedException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when activating an IME engine has failed.

exception selenium.common.exceptions.ImeNotAvailableException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when IME support is not available. This exception is thrown for every IME-related method call if IME
support is not available on the machine.

exception selenium.common.exceptions.InsecureCertificateException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Navigation caused the user agent to hit a certificate warning, which is usually the result of an expired or invalid
TLS certificate.

exception selenium.common.exceptions.InvalidArgumentException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

The arguments passed to a command are either invalid or malformed.

exception selenium.common.exceptions.InvalidCookieDomainException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when attempting to add a cookie under a different domain than the current URL.

7.1. Exceptions 33



Selenium Python Bindings, Release 2

exception selenium.common.exceptions.InvalidCoordinatesException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

The coordinates provided to an interactions operation are invalid.

exception selenium.common.exceptions.InvalidElementStateException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when a command could not be completed because the element is in an invalid state.
This can be caused by attempting to clear an element that isn’t both editable and resettable.

exception selenium.common.exceptions.InvalidSelectorException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.NoSuchElementException

Thrown when the selector which is used to find an element does not return a WebElement. Currently this only
happens when the selector is an xpath expression and it is either syntactically invalid (i.e. it is not a xpath
expression) or the expression does not select WebElements (e.g. “count(//input)”).

exception selenium.common.exceptions.InvalidSessionIdException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Occurs if the given session id is not in the list of active sessions, meaning the session either does not exist or
that it’s not active.

exception selenium.common.exceptions.InvalidSwitchToTargetException (msg=None,
screen=None,

stack-
trace=None)
Bases: selenium.common.exceptions.WebDriverException
Thrown when frame or window target to be switched doesn’t exist.
exception selenium.common.exceptions.JavascriptException (msg=None,
screen=None, stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

An error occurred while executing JavaScript supplied by the user.

exception selenium.common.exceptions.MoveTargetOutOfBoundsException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when the target provided to the ActionsChains move() method is invalid, i.e. out of document.

exception selenium.common.exceptions.NoAlertPresentException (msg=None,
screen=None,

stacktrace=None)
Bases: selenium.common.exceptions.WebDriverException

34 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

Thrown when switching to no presented alert.
This can be caused by calling an operation on the Alert() class when an alert is not yet on the screen.

exception selenium.common.exceptions.NoSuchAttributeException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when the attribute of element could not be found.

You may want to check if the attribute exists in the particular browser you are testing against. Some browsers
may have different property names for the same property. (IE8’s .innerText vs. Firefox .textContent)

exception selenium.common.exceptions.NoSuchCookieException (msg=None,
screen=None, stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

No cookie matching the given path name was found amongst the associated cookies of the current browsing
context’s active document.

exception selenium.common.exceptions.NoSuchElementException (msg=None,
screen=None,

, ‘ ‘ ‘ stacktrace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when element could not be found.
If you encounter this exception, you may want to check the following:
* Check your selector used in your find_by. ..

* Element may not yet be on the screen at the time of the find operation, (webpage is still loading)
see selenium.webdriver.support.wait. WebDriverWait() for how to write a wait wrapper to wait for an
element to appear.

exception selenium.common.exceptions.NoSuchFrameException (msg=None,
screen=None, stack-

trace=None)
Bases: selenium.common.exceptions.InvalidSwitchToTargetException

Thrown when frame target to be switched doesn’t exist.

exception selenium.common.exceptions.NoSuchWindowException (msg=None,
screen=None, stack-

trace=None)
Bases: selenium.common.exceptions.InvalidSwitchToTargetException

Thrown when window target to be switched doesn’t exist.

To find the current set of active window handles, you can get a list of the active window handles in the following
way:

print driver.window_handles

exception selenium.common.exceptions.RemoteDriverServerException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

7.1. Exceptions 35



Selenium Python Bindings, Release 2

exception selenium.common.exceptions.ScreenshotException (msg=None,
screen=None, stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

A screen capture was made impossible.

exception selenium.common.exceptions.SessionNotCreatedException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

A new session could not be created.

exception selenium.common.exceptions.StaleElementReferenceException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when a reference to an element is now “stale”.
Stale means the element no longer appears on the DOM of the page.
Possible causes of StaleElementReferenceException include, but not limited to:
* You are no longer on the same page, or the page may have refreshed since the element was located.

¢ The element may have been removed and re-added to the screen, since it was located. Such as an
element being relocated. This can happen typically with a javascript framework when values are
updated and the node is rebuilt.

» Element may have been inside an iframe or another context which was refreshed.

exception selenium.common.exceptions.TimeoutException (msg=None, screen=None,

stacktrace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when a command does not complete in enough time.

exception selenium.common.exceptions.UnableToSetCookieException (msg=None,
screen=None,
stack-

trace=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when a driver fails to set a cookie.

exception selenium.common.exceptions.UnexpectedAlertPresentException (msg=None,
screen=None,
stack-
trace=None,

alert_text=None)
Bases: selenium.common.exceptions.WebDriverException

Thrown when an unexpected alert is appeared.
Usually raised when when an expected modal is blocking webdriver form executing any more commands.

__init__ (msg=None, screen=None, stacktrace=None, alert_text=None)
X.__init__(...) initializes x; see help(type(x)) for signature

36 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

exception selenium.common.exceptions.UnexpectedTagNameException (msg=None,
screen=None,
stack-
trace=None)
Bases: selenium.common.exceptions.WebDriverException
Thrown when a support class did not get an expected web element.

exception selenium.common.exceptions.UnknownMethodException (msg=None,
screen=None,

stacktrace=None)
Bases: selenium.common.exceptions.WebDriverException

The requested command matched a known URL but did not match an method for that URL.

exception selenium.common.exceptions.WebDriverException (msg=None, screen=None,

stacktrace=None)
Bases: exceptions.Exception

Base webdriver exception.

__init__ (msg=None, screen=None, stacktrace=None)
X.__init__(...) initializes x; see help(type(x)) for signature

7.2 Action Chains

The ActionChains implementation,

class selenium.webdriver.common.action_chains.ActionChains (driver)
Bases: object

ActionChains are a way to automate low level interactions such as mouse movements, mouse button actions,
key press, and context menu interactions. This is useful for doing more complex actions like hover over and
drag and drop.

Generate user actions. When you call methods for actions on the ActionChains object, the actions are stored
in a queue in the ActionChains object. When you call perform(), the events are fired in the order they are
queued up.

ActionChains can be used in a chain pattern:

menu = driver.find_element_by_css_selector (".nav")
hidden_submenu = driver.find_element_by_css_selector (".nav #submenul")

ActionChains (driver) .move_to_element (menu) .click (hidden_submenu) .perform/()

Or actions can be queued up one by one, then performed.:

menu = driver.find_element_by_css_selector (".nav")
hidden_submenu = driver.find_element_by_css_selector (".nav #submenul™)

actions = ActionChains (driver)
actions.move_to_element (menu)
actions.click (hidden_submenu)
actions.perform()

Either way, the actions are performed in the order they are called, one after another.

__init__ (driver)
Creates a new ActionChains.

7.2. Action Chains 37



Selenium Python Bindings, Release 2

Args
e driver: The WebDriver instance which performs user actions.

click (on_element=None)
Clicks an element.

Args
* on_element: The element to click. If None, clicks on current mouse position.

click_and hold (on_element=None)
Holds down the left mouse button on an element.

Args
* on_element: The element to mouse down. If None, clicks on current mouse position.

context_click (on_element=None)
Performs a context-click (right click) on an element.

Args
* on_element: The element to context-click. If None, clicks on current mouse position.

double_click (on_element=None)
Double-clicks an element.

Args
* on_element: The element to double-click. If None, clicks on current mouse position.
drag_and_drop (source, target)
Holds down the left mouse button on the source element, then moves to the target element and releases
the mouse button.
Args
* source: The element to mouse down.

* target: The element to mouse up.

drag_and_drop_by_offset (source, xoffset, yoffset)
Holds down the left mouse button on the source element, then moves to the target offset and releases
the mouse button.
Args
* source: The element to mouse down.
* xoffset: X offset to move to.

* yoffset: Y offset to move to.

key_down (value, element=None)
Sends a key press only, without releasing it. Should only be used with modifier keys (Control, Alt and
Shift).
Args
* value: The modifier key to send. Values are defined in Keys class.

* element: The element to send keys. If None, sends a key to current focused element.

38 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

Example, pressing ctrl+c:

ActionChains (driver) .key_down (Keys.CONTROL) .send_keys ('c') .key_up (Keys.
—CONTROL) .perform()

key_up (value, element=None)
Releases a modifier key.

Args
¢ value: The modifier key to send. Values are defined in Keys class.
* element: The element to send keys. If None, sends a key to current focused element.

Example, pressing ctrl+c:

ActionChains (driver) .key_down (Keys.CONTROL) .send_keys ('c') .key_up (Keys.
—CONTROL) .perform/()

move_by_offset (xoffset, yoffset)
Moving the mouse to an offset from current mouse position.

Args
* xoffset: X offset to move to, as a positive or negative integer.
* yoffset: Y offset to move to, as a positive or negative integer.

move_to_element (to_element)
Moving the mouse to the middle of an element.

Args
¢ to_element: The WebElement to move to.
move_to_element_with_offset (fo_element, xoffset, yoffset)
Move the mouse by an offset of the specified element. Offsets are relative to the top-left corner of the
element.
Args
¢ to_element: The WebElement to move to.
* xoffset: X offset to move to.
* yoffset: Y offset to move to.
pause (seconds)
Pause all inputs for the specified duration in seconds

perform ()
Performs all stored actions.

release (on_element=None)
Releasing a held mouse button on an element.

Args
* on_element: The element to mouse up. If None, releases on current mouse position.

reset_actions ()
Clears actions that are already stored locally and on the remote end

7.2.

Action Chains 39



Selenium Python Bindings, Release 2

send_keys (*keys_to_send)
Sends keys to current focused element.

Args
* keys_to_send: The keys to send. Modifier keys constants can be found in the ‘Keys’ class.

send_keys_to_element (element, *keys_to_send)
Sends keys to an element.

Args
* element: The element to send keys.

* keys_to_send: The keys to send. Modifier keys constants can be found in the ‘Keys’ class.

7.3 Alerts

The Alert implementation.

class selenium.webdriver.common.alert.Alert (driver)
Bases: object

Allows to work with alerts.

Use this class to interact with alert prompts. It contains methods for dismissing, accepting, inputting, and getting
text from alert prompts.

Accepting / Dismissing alert prompts:

Alert (driver) .accept ()
Alert (driver) .dismiss ()

Inputting a value into an alert prompt:

name_prompt = Alert(driver) name_prompt.send_keys(“Willian Shakesphere”)
name_prompt.accept()

Reading a the text of a prompt for verification:
alert_text = Alert(driver).text self.assertEqual(“Do you wish to quit?”, alert_text)

__init__ (driver)
Creates a new Alert.

Args
e driver: The WebDriver instance which performs user actions.

accept ()
Accepts the alert available.

Usage:: Alert(driver).accept() # Confirm a alert dialog.

dismiss ()
Dismisses the alert available.

send_keys (keysToSend)
Send Keys to the Alert.

Args
* keysToSend: The text to be sent to Alert.

40 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

text
Gets the text of the Alert.

7.4 Special Keys

The Keys implementation.

class selenium.webdriver.common.keys.Keys
Bases: object

Set of special keys codes.

ADD u'\uel25’

ALT = u'\ueOOa'

ARROW DOWN = u'\ue015'
ARROW_LEFT = u'\uel012'
ARROW_RIGHT = u'\ue01l4'
ARROW_UP = u'\ue013'
BACKSPACE = u'\ue003'
BACK_SPACE = u'\ue003'
CANCEL = u'\ue001'

CLEAR = u'\ue005'

COMMAND = u'\uel03d'
CONTROL = u'\ue009'
DECIMAL = u'\ue028’

DELETE = u'\ue017'
DIVIDE = u'\ue029'
DOWN = u'\ue01l5'
END = u'\ue010'
ENTER = u'\ue007'
EQUALS = u'\ue019'
ESCAPE = u'\uelOc'
Fl = u'\ue031'

F10 = u'\uel3a’
F1ll = u'\uel3b’'
F1l2 = u'\uel3c’

F2 = u'\ue032'
F3 = u'\ue033'
F4 = u'\uel34'
F5 = u'\ue035'

7.4. Special Keys a



Selenium Python Bindings, Release 2

F6 = u'\ue036'

F7 = u'\ue037'

F8 = u'\ue038'

F9 = u'\uel039'

HELP = u'\ue002'

HOME = u'\ue01l1l'
INSERT = u'\ue01l6'
LEFT = u'\ue012'
LEFT_ALT = u'\uel0a’
LEFT_ CONTROL = u'\ue009'
LEFT_SHIFT = u'\ue008'
META = u'\ue03d'
MULTIPLY = u'\ue024'
NULL = u'\ue000'
NUMPADO = u'\ueOla’'
NUMPAD1 = u'\uelOlb'
NUMPAD2 = u'\ueOlc'
NUMPAD3 = u'\uel0ld'
NUMPAD4 = u'\ueOle'
NUMPADS5 = u'\ueOlf'
NUMPAD6 = u'\ue020'
NUMPAD7 = u'\ue021'
NUMPAD8 = u'\ue022'
NUMPADY9 = u'\ue023'
PAGE_DOWN = u'\ueOO0Of'
PAGE_UP = u'\uel0e'’
PAUSE = u'\ueOOb'
RETURN = u'\ue006'
RIGHT = u'\ue014'
SEMICOLON = u'\ue018'
SEPARATOR = u'\ue026'
SHIFT = u'\ue008'
SPACE = u'\ue00d'

SUBTRACT = u'\uel027'

TAB = u'\ue004’

UP = u'\uell3'

42

Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

7.5 Locate elements By

These are the attributes which can be used to locate elements. See the Locating Elements chapter for example usages.
The By implementation.

class selenium.webdriver.common.by.By
Bases: object

Set of supported locator strategies.

CLASS NAME = 'class name'
CSS_SELECTOR = 'css selector'’
ID = 'id'

LINK_TEXT = 'link text'

NAME = 'name'

PARTIAL_LINK TEXT = 'partial link text'
TAG_NAME = 'tag name'

XPATH = 'xpath'

7.6 Desired Capabilities

See the Using Selenium with remote WebDriver section for example usages of desired capabilities.
The Desired Capabilities implementation.

class selenium.webdriver.common.desired_capabilities.DesiredCapabilities
Bases: object

Set of default supported desired capabilities.

Use this as a starting point for creating a desired capabilities object for requesting remote webdrivers for con-
necting to selenium server or selenium grid.

Usage Example:

from selenium import webdriver
selenium_grid_url = "http://198.0.0.1:4444/wd/hub"

# Create a desired capabilities object as a starting point.
capabilities = DesiredCapabilities.FIREFOX.copy ()
capabilities['platform'] = "WINDOWS"
capabilities['version'] = "10"

# Instantiate an instance of Remote WebDriver with the desired capabilities.
driver = webdriver.Remote (desired_capabilities=capabilities,
command_executor=selenium_grid_url)

Note: Always use ‘.copy()’ on the DesiredCapabilities object to avoid the side effects of altering the Global
class instance.

ANDROID = {'browserName': 'android', 'platform': 'ANDROID', 'version': '}

CHROME = {'browserName': 'chrome', 'platform': 'ANY', 'version': '}

7.5. Locate elements By 43



Selenium Python Bindings, Release 2

EDGE = {'browserName': 'MicrosoftEdge’', 'platform': 'WINDOWS', 'version': 'y
FIREFOX = {'acceptInsecureCerts': True, 'browserName': 'firefox', 'marionette': Tru
HTMLUNIT = {'browserName': 'htmlunit', 'platform': 'ANY', 'version': '}
HTMLUNITWITHJS = {'browserName': 'htmlunit', 'JjavascriptEnabled': True, 'platform':
INTERNETEXPLORER = {'browserName': 'internet explorer', 'platform': 'WINDOWS', 'wvers
IPAD = {'browserName': 'iPad', 'platform': 'MAC', 'version': '}

IPHONE = {'browserName': 'iPhone', 'platform': 'MAC', 'version': '}

OPERA = {'browserName': 'opera', 'platform': 'ANY', 'version': 'y

PHANTOMJS = {'browserName': 'phantomjs', 'JjavascriptEnabled': True, 'platform': 'AN
SAFARI = {'browserName': 'safari', 'platform': 'MAC', 'version': 'y

WEBKITGTK = {'browserName': 'MiniBrowser', 'platform': 'ANY', 'version': 'y

7.7 Touch Actions

The Touch Actions implementation

class selenium.webdriver.common.touch_actions.TouchActions (driver)
Bases: object

Generate touch actions. Works like ActionChains; actions are stored in the TouchActions object and are fired
with perform().

__init__ (driver)
Creates a new TouchActions object.

Args

e driver: The WebDriver instance which performs user actions. It should be with touch-
screen enabled.

double_tap (on_element)
Double taps on a given element.

Args
* on_element: The element to tap.

flick (xspeed, yspeed)
Flicks, starting anywhere on the screen.

Args
 xspeed: The X speed in pixels per second.
» yspeed: The Y speed in pixels per second.

flick_element (on_element, xoffset, yoffset, speed)
Flick starting at on_element, and moving by the xoffset and yoffset with specified speed.

Args
¢ on_element: Flick will start at center of element.
o xoffset: X offset to flick to.

* yoffset: Y offset to flick to.

44 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

* speed: Pixels per second to flick.

long_press (on_element)
Long press on an element.

Args
* on_element: The element to long press.

move (xcoord, ycoord)
Move held tap to specified location.

Args
* xcoord: X Coordinate to move.
* ycoord: Y Coordinate to move.

perform ()
Performs all stored actions.

release (xcoord, ycoord)

Release previously issued tap ‘and hold’ command at specified location.

Args
¢ xcoord: X Coordinate to release.
* ycoord: Y Coordinate to release.

scroll (xoffset, yoffset)
Touch and scroll, moving by xoffset and yoffset.

Args
* xoffset: X offset to scroll to.
* yoffset: Y offset to scroll to.

scroll_from_element (on_element, xoffset, yoffset)
Touch and scroll starting at on_element, moving by xoffset and yoffset.

Args
¢ on_element: The element where scroll starts.
* xoffset: X offset to scroll to.
* yoffset: Y offset to scroll to.

tap (on_element)
Taps on a given element.

Args
 on_element: The element to tap.

tap_and_hold (xcoord, ycoord)
Touch down at given coordinates.

Args
e xcoord: X Coordinate to touch down.

* ycoord: Y Coordinate to touch down.

7.7.

Touch Actions

45



Selenium Python Bindings, Release 2

7.8 Proxy

The Proxy implementation.

class selenium.webdriver.common.proxy.Proxy (raw=None)

Bases: object

Proxy contains information about proxy type and necessary proxy settings.

__init__ (raw=None)
Creates a new Proxy.

Args

* raw: raw proxy data. If None, default class values are used.

add_to_capabilities (capabilities)

Adds proxy information as capability in specified capabilities.

Args

e capabilities: The capabilities to which proxy will be added.

auto_detect
Returns autodetect setting.

autodetect = False

ftpProxy = ''

ftp_proxy
Returns ftp proxy setting.

httpProxy = ''

http_proxy
Returns http proxy setting.

noProxy = "'

no_proxy
Returns noproxy setting.

proxyAutoconfigUrl = ''
proxyType = {'ff _value': 6,

proxy_autoconfig url
Returns proxy autoconfig url setting.

proxy_type
Returns proxy type as ProxyType.

socksPassword = ''

socksProxy = ''

socksUsername

socks_password
Returns socks proxy password setting.

socks_proxy
Returns socks proxy setting.

'UNSPECIFIED'}

46

Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

socks_username
Returns socks proxy username setting.

sslProxy = ''

ssl_proxy
Returns https proxy setting.

class selenium.webdriver.common.proxy.ProxyType
Set of possible types of proxy.

Each proxy type has 2 properties: ‘ff_value’ is value of Firefox profile preference, ‘string’ is id of proxy type.

classmethod load (value)

AUTODETECT = {'ff value': 4, 'string': 'AUTODETECT ' }
DIRECT = {'ff value': 0, 'string': 'DIRECT'}

MANUAL = {'ff value': 1, 'string': 'MANUAL' }

PAC = {'ff value': 2, 'string': 'PAC'}

RESERVED_1 = {'ff value': 3, 'string': 'RESERVED1 '}
SYSTEM = {'ff _value': 5, 'string': 'SYSTEM' }
UNSPECIFIED = {'ff value': 6, 'string': 'UNSPECIFIED'}

class selenium.webdriver.common.proxy.ProxyTypeFactory
Factory for proxy types.

static make (ff_value, string)

7.9 Utilities

The Utils methods.

selenium.webdriver.common.utils.find_connectable_ip (host, port=None)
Resolve a hostname to an IP, preferring IPv4 addresses.

We prefer IPv4 so that we don’t change behavior from previous IPv4-only implementations, and because some
drivers (e.g., FirefoxDriver) do not support IPv6 connections.

If the optional port number is provided, only IPs that listen on the given port are considered.
Args
* host - A hostname.
* port - Optional port number.

Returns A single IP address, as a string. If any IPv4 address is found, one is returned. Otherwise, if
any IPv6 address is found, one is returned. If neither, then None is returned.

selenium.webdriver.common.utils.free_port ()
Determines a free port using sockets.

selenium.webdriver.common.utils.is_connectable (port, host="localhost’)
Tries to connect to the server at port to see if it is running.

Args

* port - The port to connect.

7.9. Utilities a7



Selenium Python Bindings, Release 2

selenium.webdriver.common.utils.is_url_connectable (port)
Tries to connect to the HTTP server at /status path and specified port to see if it responds successfully.

Args
* port - The port to connect.

selenium.webdriver.common.utils.join_host_port (host, port)
Joins a hostname and port together.

This is a minimal implementation intended to cope with IPv6 literals. For example, _join_host_port(‘::1’, 80)
== ‘[::1]:80°.

Args
* host - A hostname.
* port - An integer port.

selenium.webdriver.common.utils.keys_to_typing (value)
Processes the values that will be typed in the element.

7.10 Service

class selenium.webdriver.common.service.Service (executable, port=0, log_file=-3,

env=None, start_error_message="")
Bases: object

__init__ (executable, port=0, log_file=-3, env=None, start_error_message="")
X.__init__(...) initializes x; see help(type(x)) for signature

assert_process_still_ running()
command_line_args ()
is_connectable()
send_remote_shutdown_command ()

start ()
Starts the Service.

Exceptions

* WebDriverException : Raised either when it can’t start the service or when it can’t connect
to the service

stop ()
Stops the service.

service_url
Gets the url of the Service

7.11 Application Cache

The ApplicationCache implementaion.

class selenium.webdriver.common.html5.application_cache.ApplicationCache (driver)
Bases: object

48 Chapter 7. WebDriver API



Selenium Python Bindings, Release 2

__init__ (driver)
Creates a new Aplication Cache.

Args
e driver: The WebDriver instance which performs user actions.
CHECKING = 2

DOWNLOADING = 3

IDIE =1
OBSOLETE = 5
UNCACHED = 0

UPDATE_READY = 4

status
Returns a current status of application cache.

7.12 Firefox WebDriver

class selenium.webdriver.firefox.webdriver.WebDriver (firefox_profile=None,
firefox_binary=None,
timeout=30, capabili-
ties=None, proxy=None, exe-
cutable_path="geckodriver’,
options=None, ser-
vice_log_path="geckodriver.log’,
firefox_options=None,
service_args=None, de-
sired_capabilities=None,
log_path=None,

keep_alive=True)
Bases: selenium.webdriver.remote.webdriver.WebDriver

__init__ (firefox_profile=None, firefox_binary=None, timeout=30, capabilities=None, proxy=None,
executable_path="geckodriver’, options=None, service_log_path=’geckodriver.log’, fire-
fox_options=None, service_args=None, desired_capabilities=None, log_path=None,
keep_alive=True)

Starts a new local session of Firefox.

Based on the combination and specificity of the various keyword arguments, a capabilities dictionary will
be constructed that is passed to the remote end.

The keyword arguments given to this constructor are helpers to more easily allow Firefox WebDriver
sessions to be customised with different options. They are mapped on to a capabilities dictionary that is
passed on to the remote end.

As some of the options, such as firefox_profile and options.profile are mutually exclusive, precedence is
given from how specific the setting is. capabilities is the least specific keyword argument, followed by
options, followed by firefox_binary and firefox_profile.

In practice this means that if firefox_profile and options.profile are both set, the selected profile instance will
always come from the most specific variable. In this case that would be firefox_profile. This will result in
options.profile to be ignored because it is considered a less specific setting than the top-level firefox_profile
keyword argument. Similarily, if you had specified a capabilities[ “moz:firefoxOptions” J[ “profile” ]
Base64 string, this would rank below options.profile.

7.12. Firefox WebDriver 49



Selenium Python Bindings, Release 2

Parameters

e firefox profile — Instance of FirefoxProfile object or a string. If undefined,
a fresh profile will be created in a temporary location on the system.

* firefox_binary — Instance of FirefoxBinary or full path to the Firefox binary.
If undefined, the system default Firefox installation will be used.

* timeout — Time to wait for Firefox to launch when using the extension connection.
* capabilities — Dictionary of desired capabilities.

e proxy — The proxy settings to us when communicating with Firefox via the extension
connection.

* executable_path — Full path to override which geckodriver binary to use for Firefox
47.0.1 and greater, which defaults to picking up the binary from the system path.

* options - Instance of options.Options.

* service_log_path — Where to log information from the driver.
» firefox_ options — Deprecated argument for options

* service_args — List of args to pass to the driver service

* desired_capabilities — alias of capabilities. In future versions of this library, this
will replace ‘capabilities’. This will make the signature consistent with RemoteWebDriver.

* log_path — Deprecated argument for service_log_path

* keep_alive — Whether to configure remote_connection.RemoteConnection to use
HTTP keep-alive.

context (**kwds)
Sets the context that Selenium commands are running in using a with statement. The state of the context
on the server is saved before entering the block, and restored upon exiting it.

Parameters context — Context, may be one of the class properties CONTEXT _CHROME or
CONTEXT_CONTENT.

Usage example:

with selenium.context (selenium.CONTEXT_CHROME) :
# chrome scope
do stuff

install_addon (path, temporary=None)
Installs Firefox addon.

Returns identifier of installed addon. This identifier can later be used to uninstall addon.
Parameters path — Absolute path to the addon that will be installed.
Usage driver.install_addon(‘/path/to/firebug.xpi’)

quit ()
Quits the driver and close every associated window.

set_context (context)

uninstall_addon (identifier)
Uninstalls Firefox addon using its identifier.

Usage driver.uninstall_addon(‘addon@foo.com’)

50 Chapter 7. WebDriver API


mailto:'addon@foo.com

Selenium Python Bindings, Release 2

CONTEXT CHROME = 'chrome'
CONTEXT_ CONTENT = 'content'
NATIVE_EVENTS_ ALLOWED = True

firefox_profile

7.13 Firefox WebDriver Options

class selenium.webdriver.firefox.options.Log
Bases: object

__dinit__ ()
X.__init__(...) initializes x; see help(type(x)) for signature

to_capabilities ()

class selenium.webdriver.firefox.options.Options
Bases: object

_init_ ()
X.__init__(...) initializes x; see help(type(x)) for signature

add_argument (argument)
Add argument to be used for the browser process.

set_capability (name, value)
Sets a capability.

set_headless (headless=True)
Deprecated, options.headless = True

set_preference (name, value)
Sets a preference.

to_capabilities ()
Marshals the Firefox options to a moz:firefoxOptions object.

KEY = 'moz:firefoxOptions'
accept_insecure_certs

arguments
Returns a list of browser process arguments.

binary
Returns the FirefoxBinary instance

binary_ location
Returns the location of the binary.

capabilities

headless
Returns whether or not the headless argument is set

preferences
Returns a dict of preferences.

profile
Returns the Firefox profile to use.

7.13. Firefox WebDriver Options

51



Selenium Python Bindings, Release 2

proxy
returns Proxy if set otherwise None.

7.14 Firefox WebDriver Profile

exception selenium.webdriver.firefox.firefox_profile.AddonFormatError
Bases: exceptions.Exception

Exception for not well-formed add-on manifest files

class selenium.webdriver.firefox.firefox_profile.FirefoxProfile (profile_directory=None)
Bases: object

__init__ (profile_directory=None)
Initialises a new instance of a Firefox Profile

Args

* profile_directory: Directory of profile that you want to use. If a directory is passed in it
will be cloned and the cloned directory will be used by the driver when instantiated. This
defaults to None and will create a new directory when object is created.

add_extension (extension="webdriver.xpi’)

set_preference (key, value)
sets the preference that we want in the profile.

set_proxy (proxy)

update_preferences ()

ANONYMOUS_PROFILE_NAME = 'WEBDRIVER_ ANONYMOUS_PROFILE'
DEFAULT_ PREFERENCES = None

accept_untrusted_certs

assume_untrusted_cert_